skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Jianing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Peptide coassembly offers novel opportunities for designing advanced nanomaterials. This study used coarse-grained molecular dynamics simulations to examine the coassembly of charge-complementary peptides, assessing various ratios and the role of charge and hydrophobicity in their aggregation. We discovered that peptide length, charge, and hydrophobicity significantly influence coassembly behavior, with more hydrophobic peptides exhibiting greater aggregation despite electrostatic repulsion. Beyond the coassembly of two peptides, we also observed that the coassembly of more than two peptides will likely lead to new assembly structures and properties. Our findings underscore the importance of peptide composition and length in tuning the coassembly and the resulting properties, thus facilitating the design of complex peptide nanoparticles for biomedical and biotechnological applications. 
    more » « less
    Free, publicly-accessible full text available May 8, 2026
  2. Wireframe DNA nanocages, an important type of DNA nanomaterials, exhibit exceptional programmability for chemical modifications, along with tunable size and shape. Nevertheless, the impact of their conformational fluctuations on cage design has not been thoroughly explored, despite speculation regarding its influence on biomedical applications. This study marks the first systematic examination of the conformational dynamics of prismatic DNA nanocages through molecular modeling and simulation. By comparing four different DNA nanocage topologies, we uncover design parameter combinations and conditions that facilitate access to varying conformational states. We observe the expansion and contraction of these cages across various topologies, hybridization states, and ionic environments (Mg2+/Na+), with their volumes varying from 15% to 150% of the ideal cage volumes. Our results indicate that the dynamics of DNA cages is influenced by the concentrations of Mg2+ and Na+ ions. Additionally, the flexibility of specific DNA strands can be manipulated, thereby altering the cage volume, through the selective hybridization of the cage edges. Ultimately, the conformational dynamics of DNA nanocages are captured in atomic detail. This study offers valuable modeling tools and methodologies to assist future DNA nanocage design endeavors. 
    more » « less
    Free, publicly-accessible full text available January 28, 2026
  3. Geometric isomerism in mechanically interlocked systems — which arises when the axle of a mechanically interlocked molecule is oriented, and the macrocyclic component is facially dissymmetric — can provide enhanced functionality for directional transport and polymerization catalysis. We now introduce a kinetically controlled strategy to control geometric isomerism in [2]rotaxanes. Our synthesis provides the major geometric isomer with high selectivity, broadening synthetic access to such interlocked structures. Starting from a readily accessible [2]rotaxane with a symmetrical axle, one of the two stoppers is activated selectively for stopper exchange by the substituents on the ring component. High selectivities are achieved in these reactions, based on coupling the selective formation reactions leading to the major products with inversely selective depletion reactions for the minor products. Specifically, in our reaction system, the desired (major) product forms faster in the first step, while the undesired (minor) product subsequently reacts away faster in the second step. Quantitative 1H NMR data, fit to a detailed kinetic model, demonstrates that this effect (which is conceptually closely related to minor enantiomer recycling and related processes) can significantly improve the intrinsic selectivity of the reactions. Our results serve as proof of principle for how multiple selective reaction steps can work together to enhance the stereoselectivity of synthetic processes forming complex mechanically interlocked molecules. 
    more » « less
  4. The lack of biologically relevant protein structures can hinder rational design of small molecules to target G protein-coupled receptors (GPCRs). While ensemble docking using multiple models of the protein target is a promising technique for structure-based drug discovery, model clustering and selection still need further investigations to achieve both high accuracy and efficiency. In this work, we have developed an original ensemble docking approach, which identifies the most relevant conformations based on the essential dynamics of the protein pocket. This approach is applied to the study of small-molecule antagonists for the PAC1 receptor, a class B GPCR and a regulator of stress. As few as four representative PAC1 models are selected from simulations of a homology model and then used to screen three million compounds from the ZINC database and 23 experimentally validated compounds for PAC1 targeting. Our essential dynamics ensemble docking (EDED) approach can effectively reduce the number of false negatives in virtual screening and improve the accuracy to seek potent compounds. Given the cost and difficulties to determine membrane protein structures for all the relevant states, our methodology can be useful for future discovery of small molecules to target more other GPCRs, either with or without experimental structures. 
    more » « less